ATA10 Series

ATA Flash card

WEDC ATA10 Series (ATA10) flash memory cards are ATA compatible cards and are suitable for usage as a data storage memory medium for PC's or any other electronic equipment.

Packaged in a PCMCIA type I or type II housing, the WEDC ATA series cards provide a lightweight, low power, reliable nonvolatile storage medium.

Built in to the card controller, Error Correcting Code (ECC) provides a high level of reliability and MTBF (Mean Time Between Failures)

WEDC's standard cards are shipped with the WEDC FLASH Logo. Cards are also available with blank housings (no Logo). The blank housings are available in both a recessed (for label) and flat housing. Please contact your WEDC sales representative for further information on Custom artwork.

Features

- PC Card ATA compatible
- 68 pin two piece connector and type I or type II housing (5 mm)
- PCMCIA/JEIDA 4.1
- x8/x16 PCMCIA standard interface
- Single 3 Volt / 5 Volt Supply
- ISA standard, Read/Write unit is 1 sector (512 bytes)
- Sector Read/Write transfer rate: $8 \mathrm{MB} / \mathrm{s}$ burst
- High reliability based on internal ECC function (Error Correcting Code) and wear leveling functions.
- Card Capacity
- 8 MB to 512 MB (unformatted)
- Card Access mode:
- Memory card mode
- I/O card mode
- True-IDE mode
- Data Write Endurance is 100 k program/erase cycles
- Data reliability is 1 error in 10^{14} bits read
- Auto Sleep Function

Block Diagram

Block Diagram

PCMCIA Flash Memory Card

ATA10 Series

Mechanical

Type I

Type II

PCMCIA Flash Memory Card

ATA10 Series

Card Capacity

Because of card formatting, user available capacity is smaller than the original memory size. The table below presents the relation between card capacity and formatted capacity.

Note: Other capacities are available: contact your company sales representative for details.

Card type	Capacity	Formatted Capacity
7P008ATA1003C25	8 MB	7.38 MB
7P016ATA1003C25	16 MB	15.42 MB
7P032ATA1003C25	32 MB	30.88 MB
7P048ATA1003C25	48 MB	47.23 MB
7P064ATA1003C25	64 MB	63.07 MB
7P080ATA1003C25	80 MB	76.00 MB
7P096ATA1003C25	96 MB	91.20 MB
7P112ATA1003C25	112 MB	106.40 MB
7P128ATA1003C25	128 MB	121.60 MB
7P192ATA1003C25	192 MB	183 MB
7P256ATA1003C25	256 MB	244 MB

System Performance

Item	Performance
Data transfer rate	$8.0 \mathrm{MB} / \mathrm{s}$ burst
	$1.0 \mathrm{MB} / \mathrm{s}$ sustained read
	$600 \mathrm{kB} / \mathrm{s}$ sustained write
Data reliability	recoverable error in $10^{\wedge 1} 14$ bits read.
Start up time (Sleep to Idle)	$2 \mathrm{~ms}(\mathrm{max})$
Start up time (Reset to Ready)	$50 \mathrm{~ms}($ (typ $)$

Card controller provides PCMCIA compatibility.
Card supports fast ATA host to buffer burst transfer rates up to 20MB/s (with PIO mode 4) and fast transfer rate to/from flash memory up to $8 \mathrm{MB} / \mathrm{s}$

PCMCIA Flash Memory Card

ATA10 Series

Absolute Maximum Ratings ${ }^{(1)}$

Operating Temperature TA (ambient)

Commercial
Industrial
Storage Temperature
Commercial
Industrial
Voltage on any pin relative to VSS
VCC supply Voltage relative to VSS
$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$ (1)
-0.5 V to +7.0 V

Note:

(1) Stress greater than those listed under "Absolute Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended DC Operating Conditions

Parameter	Symbol	Min		Max	Unit	Note
Operating temp	Ta	0	25	60	C	
Vcc voltage	Vcc	4.5	5	5.5	V	

DC Characteristics ${ }^{(1)}$

CMOS Test Conditions: VIL $=\mathrm{VSS} \pm 0.2 \mathrm{~V}, \mathrm{VIH}=\mathrm{VCC} \pm 0.2 \mathrm{~V}$

Symbol	Parameter	Notes	Min	Typ	Max	Units	Test Conditions
Vcc	Power Supply Voltage		4.5 V		5.5 V		
ICC1	Sector READ current	2		50		mA	CMOS level
ICC2	Sector WRITE current	2		50		mA	CMOS level
ICCS	VCC Sleep/Standby Current	1,2		0.5		mA	Control Signals $=$ VCC
ILI	Input Leakage Current	1,3			± 20	$\mu \mathrm{~A}$	VCC $=$ VCCMAX Vin $=$ VCC or VSS
ILO	Output Leakage Current				± 20	$\mu \mathrm{~A}$	VCC $=$ VCCMAX Vout $=$ VCC or VSS
VIL	Input Low Voltage				0.8	V	
VIH	Input High Voltage		2.0			V	
VOL	Output Low Voltage				0.4	V	$\mathrm{IOL}=3.2 \mathrm{~mA}$
VOH	Output High Voltage		2.4			V	$\mathrm{IOH}=-2.0 \mathrm{~mA}$

Notes:

1. Control Signals: $C_{1} \#, C_{2} \#$, OE\#, WE\#, REG\#, IORD\#, IOWR\#.
2. Typical: $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}=+25 \mathrm{C}$.
3. Exceptions: Leakage currents on control signals will be $<500 \mu \mathrm{~A}$ when $\mathrm{VIN}=\mathrm{GND}$ due to internal pull-up resistors.

PCMCIA Flash Memory Card

ATA10 Series

Pinout

	Memory card mode		I/ O Card Mode		TrueIDE Mode	
Pin Number	Signal Name	I/ 0	Signal Name	I/ 0	Signal Name	I/ 0
1	GND		GND		GND	
2	D3	I/ 0	D3	I/ 0	D3	I/ 0
3	D4	I/ 0	D4	I/ 0	D4	I/ 0
4	D5	I/ 0	D5	I/ 0	D5	I/ 0
5	D6	I/ 0	D6	I/ 0	D6	I/ 0
6	D7	I/ 0	D7	I/ 0	D7	I/ 0
7	CE1\#	I	CE1\#	I	CE1\#	I
8	A10	I	A10	I	A10	I
9	OE\#	I	OE\#	I	ATASEL\#	I
10	N.C.	-	N.C.	-	N.C.	-
11	A9	I	A9	I	A9	I
12	A8	I	A8	I	A8	I
13	N.C.	-	N.C.	-	N.C.	-
14	N.C.	-	N.C.	-	N.C.	-
15	WE\#	I	WE\#	I	WE\#	I
16	RDY/ BSY	0	IREQ\#	0	INTRQ	0
17	V c		Voc		Voc	
18	N.C.	-	N.C.	-	N.C.	-
19	N.C.	-	N.C.	-	N.C.	-
20	N.C.	-	N.C.	-	N.C.	-
21	N.C.	-	N.C.	-	N.C.	-
22	A7	I	A 7	1	A7	I
23	A6	I	A6	I	A6	I
24	A5	I	A5	I	A5	I
25	A4	I	A4	I	A4	I
26	A3	I	A3	I	A3	I
27	A2	I	A2	I	A2	I
28	A1	I	A1	1	A1	I
29	A0	I	A0	I	A0	I
30	D0	I/ 0	D0	I/ 0	D0	I/ 0
31	D1	I/ 0	D1	I/ 0	D1	I/ 0
32	D2	I/ 0	D2	I/ 0	D2	I/ 0
33	WP	0	IOIS16\#	0	IOIS16\#	0
34	GND		GND		GND	

PCMCIA Flash Memory Card

ATA10 Series

Pinout (Cont.)

	Memory card mode		I/ O Card Mode		True IDE Mode	
Pin Number	Signal Name	I/ 0	Signal Name	I/ 0	Signal Name	I/ 0
35	GND		GND		GND	
36	CD1\#	0	CD1\#	0	CD1\#	0
37	D11	I/ 0	D11	I/ 0	D11	I/ 0
38	D12	I/ 0	D12	I/ 0	D12	I/ 0
39	D13	I/ 0	D13	I/ 0	D13	I/ 0
40	D14	I/ 0	D14	I/ 0	D14	I/ 0
41	D15	I	D15	I	D15	I
42	CE2\#	I	CE2\#	I	CE2\#	I
43	VS1	0	V S1	0	VS1	0
44	IORD \#	I	IORD\#	I	IORD\#	I
45	IOWR\#	I	IOWR\#	I	IOWR\#	I
46	NC	-	NC	-	NC	-
47	NC	-	NC	-	NC	-
48	NC	-	NC	-	NC	-
49	NC	-	NC	-	NC	-
50	NC	-	NC	-	NC	-
51	Vcc		Vcc		Vcc	
52	NC	-	NC	-	NC	-
53	NC	-	NC	-	NC	-
54	NC	-	NC	-	NC	-
55	NC	-	NC	-	NC	-
56	CSEL\#	I	CSEL\#	I	CSEL\#	I
57	VS2	0	V S2	0	VS2	0
58	RESET	I	RESET	I	RESET\#	I
59	Wait\#	0	Wait\#	0	IORDY	0
60	INPACK \#	0	INPACK \#	0	INPACK \#	0
61	REG\#	I	REG \#	I	REG\#	I
62	BVD2	I/ 0	SPK R\#	I/ 0	DASP	I/ 0
63	BVD1	I/ 0	STSCHG \#	I/ 0	PDIAG\#	I/ 0
64	D8	I/ 0	D8	I/ 0	D8	I/ 0
65	D9	I/ 0	D9	I/ 0	D9	I/ 0
66	D10	0	D10	0	D10	0
67	CD2\#	0	CD2\#	0	CD2\#	0
68	GND		GND		GND	

Note: CD1\# and CD2\# are grounded internal to PC Card.

ATA10 Series

Card Signal Description

Symbol	Type	Name and Function
A 0 - A 10	IN PUT	ADDRESS IN PUTS: A 0 through A 10 Signal A 0 is not used in word access mode. A 10 is the most significant bit. In True ID E Mode only HA [2..0] are used for selecting the eight registers in the Task File, the remaining address lines should be grounded.
D 0-D 15	$\begin{aligned} & \hline \text { IN PUT/OUT } \\ & \text { PUT } \end{aligned}$	DATA INPUT/OUTPUT: D 0 THROUGH D 15 constitute the bidirectional databus. D 0-D 7 constitute the lower (even) byte and D 8 D 15 the upper (odd) byte. D 15 is the MSB.
CE1\#, CE2\#	IN PUT	CARD ENABLE 1AND 2: active low signals; CE1\# enables even byte accesses, CE2\# enables odd byte accesses. In True ID E Mode CE2\# is used to select the Alternate Status Register and the D evice control Register while CE1 \# is the cheap select for the other task file registers.
$\begin{aligned} & \text { O E \#, } \\ & \text { A ST EL \# } \end{aligned}$	IN PUT	OUTPUT ENA BLE, ATA Select: A ctive low signal enabling read data from A ttribute and Common memory area. To enable True ID E Mode this input should be grounded by the host.
WE\#	IN PUT	WRITE ENA BLE: A ctive low signal gating write data to the memory card. In true ID E Mode this input signal is not used and should be connected to Vcc.
RDY/BSY \# IREQ \# INTRQ	OUTPUT	Ready/ Busy, Interrupt Request: In I/ O mode this signal is is IREQ \# pin. The signal of low level indicates that the card is requesting software service to host, and high level indicate that the card is not requesting. In memory mode, the signal is set high when the ATA card is ready to accept new data transfer operation and held low when card is busy. At power up and at Reset, the RDY / BSY is low until (busy) until the card has completed its power up or reset function. Host should provide a pull up resistor
CD1\#, CD 2 \#	OUTPUT	CARD DETECT 1 and 2: Provide card insertion detection. These signals are connected to ground internally on the memory card. The host socket interface circuitry shall supply 10 K -ohm or larger pull-up resistors on these signal pins.
$\begin{aligned} & \hline \text { WP } \\ & \text { IO IS16\# } \end{aligned}$	OUTPUT	Write Protect, 16 bit I/ 0 port: In memory mode, WP is held low: always writable). In I/ O mode, IO IS16\# is asserted low when Task File Registers are accessed in 16 bit mode. In True ID E mO de this signal is asserted low when this device is expecting a word data transfer cycle.
VPP1, VPP2	N.C.	PROGRAM/ ERASE POWER SU PPLY: No Connection for ATA card.
VCC		CARD POWER SUPPLY: 5.0 V for all internal circuitry.
GND		G ROUND: for all internal circuitry.
REG \#	IN PUT	ATTRIBUTE MEMO RY SELECT: U sed to enable access to A ttribute space. Should be in high level during common memory area access. In True ID E Mode input signal is not used and should be connected to Vcc.
Reset Reset\#	IN PUT	Reset, Reset \#: A ctive signal will clear all registers on the card (power on default). In True ID E Mode Reset \# is the active low hardware reset from the host.

ATA10 Series

Card Signal Description (Cont.)

Symbol	Type	Name and Function
WA IT \#	OUTPUT	WAIT: This signal outputs low level for purpose of delaying memory or I/ O access cycle. In True ID E Mode this signal can be used as IO RDY.
BVD 2 SPKR \# DASP \#	Input/ O utput	Battery Voltage D etect 2, D ata audio output, Disk active/ slave present: In memory card mode, BVD 2 is always high. In I/ O mode, SPKR \# is held high: no digital audio signals. In True ID E Mode DA SP \# is Disk A ctive/ Slave Present signal in Master/ Slave handshake protocol.
BVD 1 STSCHNG \# PDIAG \#	Input/ O utput	Battery Voltage D etect 1, Status Change, Pass Diagnostic: In memory card mode BVD 1 Is set to high level. In I/ O mode ST SCHNG \# is used to alert the host to changes in Status registers. In True ID E mode PD IG is the Pass D iagnostic signal in Master/ Slave handshake protocol.
VS1, V S2	OUTPUT	VO LTAG E SEN SE: N otifies the host socket of the card's VCC requirements. VS1 and VS2 are open to indicate a $5 \mathrm{~V}, 16$ bit card has been inserted.
CSEL \#	Input	Card Select: This signal is not used in memory and I/ O mode. With internal pull up resistor this signal is used to configure this card as Master or Slave when configured in True ID E Mode. When this pin is GND, selected Master config, when pin is open the card is configured as a Slave.
IN PACK \#	Output	Input A cknowledge: This signal is not used in memory mode. It is asserted by the card when the card is selected and responding to an I/ 0 read cycle at the address that is on the address bus. This signal is used for the input data buffer control. In True ID E Mode this signal is not used and should not be connected at the host.
IORD \#	Input	I/ O Read: is used for control of read data in T ask File area. This card respond to this signal only in I/ 0 interface mode
IOWR \#	Input	I/ \mathbf{O} Write: is used for control of data write in T ask File area. This card respond to this signal only in I/ 0 interface mode

PCMCIA Flash Memory Card

ATA10 Series

Card Function Explanation

Register Construction

- Attribute Region
- Configuration Register
- Configuration Option Register
- Configuration and Status Register
- Pin Replacement Register
- Socket and Copy Register
- CIS (Card Information Structure)
- Task File Region
- Error Register
- Feature Register
- Sector Count Register
- Sector Number Register
- Cylinder Low Register
- Cylinder High Register
- Drive/Head Register
- Status Register
- Command Register
- Disk Address Pointer
- Buffer RAM Size Control Register
- Host Interrupt Status Register
- Host Interrupt Enable Register
- ECC Control Register
- ECC 0-2 Registers
- DMA Control Register

PCMCIA Flash Memory Card

ATA10 Series

Host Access Specification

1. Attribute Access Specification

When the CIS-ROM region or Configuration register region is accessed, read and write operations are executed under the condition of REG\# = Low as follows. That region can be accessed by Byte/Word/Odd-byte modes which are defined by the PC card standard specification.

Attribute Read Access Mode

Mode	REG\#		CE2\#	CE1\#	AO	OE\#	WE\#	D15 - D8
D7 - D0								
Standby Mode	X	H	H	X	X	X	High Z	High Z
Byte access	L	H	L	L	L	H	High Z	even byte
	L	H	L	H	L	H	High Z	invalid
Word access (16 bit)	L	L	L	X	L	H	invalid	even byte
Odd Byte access (8 bi	L	L	H	X	L	H	invalid	High Z

Attribute Write Access Mode

| Mode | REG\# CE2\# | | CE1\# | A0 | OE\# | WE\# | D15 - D8 | D7 - D0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standby Mode | X | H | H | X | X | X | Don't care | Don't care |
| Byte access | L | H | L | L | H | L | Don't care | even byte |
| | L | H | L | H | H | L | Don't care | Don't care |
| Word access (16 bit) | L | L | L | X | H | L | Don't care | even byte |
| Odd Byte access (8 bit | L | L | H | X | H | L | Don't care | Don't care |

PCMCIA Flash Memory Card

ATA10 Series

2. Task File Register Access Specification

There are two cases of Task File register mapping, one is the mapped I/O address area, the other is the Mapped Memory address area. Each case of the Task File register read and write operation is executed under the following conditions. The area can be accessed by Byte/Word/Odd Byte mode which is defined by the PC card standard specification.
(a) I/O address map

Task File Register Read Access Mode (a)

Mode	REG\#	CE2\#	CE1\#	A0	IORD\#	IOWR\#	OE\#	WE\#	D15-D8	D7- D0
Standby Mode	X	H	H	X	X	X	X	X	High Z	High Z
Byte access	L	H	L	L	L	H	H	H	High Z	even byte
	L	H	L	H	L	H	H	H	High Z	odd byte
Word access (16 bit)	L	L	L	X	L	H	H	H	odd byte	even byte
Odd Byte access (8 bii	L	L	H	X	L	H	H	H	odd byte	High Z

Task File Register Write Access Mode (a)

| Mode | REG\# | | CE2\# | CE1\# | AO | IORD\# | IOWR\# | OE\# | WE\# | D15 - D8 | D7 - D0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standby Mode | X | H | H | X | X | X | X | X | Don't care | Don't care | |
| Byte access | L | H | L | L | H | L | H | H | Don't care | even byte | |
| | L | H | L | H | H | L | H | H | Don't care | odd byte | |
| Word access (16 bit) | L | L | L | X | H | L | H | H | odd byte | even byte | |
| Odd Byte access (8 bi | L | L | H | X | H | L | H | H | odd byte | Don't care | |

(b) Memory address map

Task File Register Read Access Mode (b)

Mode	REG\#	CE2\#	CE1\#	A0	IORD\#	IOWR\#	OE\#	WE\#	D15-D8	D7 - D0
Standby Mode	X	H	H	X	X	X	X	X	High Z	High Z
Byte access	H	H	L	L	H	H	L	H	High Z	even byte
	H	H	L	H	H	H	L	H	High Z	odd byte
Word access (16 bit)	H	L	L	X	H	H	L	H	odd byte	even byte
Odd Byte access (8 bit	H	L	H	X	H	H	L	H	odd byte	High Z

Task File Register Write Access Mode (b)

Mode	REG\#	CE2\#	CE1\#	A0	IORD\#	IOWR\#	OE\#	WE\#	D15-D8	D7- D0
Standby Mode	X	H	H	X	X	X	X	X	Don't care	Don't care
Byte access	H	H	L	L	H	H	H	L	Don't care	even byte
	H	H	L	H	H	H	H	L	Don't care	odd byte
Word access (16 bit)	H	L	L	X	H	H	H	L	odd byte	even byte
Odd Byte access (8 bif	H	L	H	X	H	H	H	L	odd byte	Don't care

ATA10 Series

3. True IDE Mode

The card can be configured in a True IDE Mode of operation. This card is configured in this mode only when the OE\# input signal is asserted low by the host during the power off to power on cycle. In this True IDE Mode the PCMCIA protocol and configuration are disabled and only an I/O operation to the Task File registers is allowed. In this mode no Memory or Attribute registers are accessible to the host. The card permits 8 bit access if the user issues a Set feature Command to put the device in the 8 bit Mode.

True IDE Mode Read I/O function

Mode	CE2\#	CE1\#	A0..A2	IORD\#	IOWR\#	D15 - D8	D7- D0
Invalid Mode	L	L	X	X	X	High Z	High Z
Standby Mode	H	H	X	X	X	High Z	High Z
Data Register Access	H	L	0 h	L	H	odd byte	even byte
All status access	L	H	6 h	L	H	High Z	status out
Other task file access	H	L	$1-7 \mathrm{~h}$	L	H	High Z	data

True IDE Mode Read I/O function

Mode	CE2\#	CE1\#	A0..A2	IORD\#	IOWR\#	D15 - D8	D7 - D0
Invalid Mode	L	L	X	X	X	Don't care	Don't care
Standby Mode	H	H	X	X	X	Don't care	Don't care
Data Register Access	H	L	0 h	H	L	odd byte	even byte
All status access	L	H	6 h	H	L	Don't care	control in
Other task file access	H	L	$1-7 \mathrm{~h}$	H	L	Don't care	data

PCMCIA Flash Memory Card

ATA10 Series

Configuration Register Specifications

This card supports four Configuration registers for the purpose of the configuration and observation of this card.

1. Configuration Option Register (Address 200H)

This register is used for the configuration of the card configuration status and for the issuing the soft reset to the card.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
SRESET	LevIREQ	INDEX					

Note: initial value: 00 H

Name	R/W	Function
SRESET	R/W	Setting this bit to "1", places the card in the reset state (Card Hard Reset). This operation is equal to Hard Reset, except this bit is not cleared. Then this bit is set to "0", (HOST->)
places the card in the reset state of Hard Reset (This bit is set to "0" by Hard Reset).		
Card configuration status is reset and the card internal initialized operation starts when		
Card Hard Reset is executed, so the next access to the card should be the same		
sequence as the power on sequence.		

INDEX bit assignment

INDEX bit

5	4	3	2	1	0	Card mode	Task File register address	Mapping mode
0	0	0	0	0	0	Memory card	0 H to FH, 400H to 7FFH	memory mapped
0	0	0	0	0	1	I/O card	$\times \times 0 \mathrm{H}$ to $\times \mathrm{xFH}$	contiguous I/O mapped
0	0	0	0	1	0	I/O card	1F0H to 1F7H, 3F6H to 3F7H	primary I/O mapped
0	0	0	0	1	1	I/O card	170 H to 177H, 376 H to 377H	secondary I/O mapped

PCMCIA Flash Memory Card

ATA10 Series

2. Configuration and Status Register (Address 202H)

This register is used for observing the card state.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
CHGED	SIGCHG	IOIS8	0	0	PWD	INTR	0

Note: initial value: OOH

Name	R/W	Function
CHGED (CARD->)	R	This bit indicates that the CRDY/-BSY bit on the Pin Replacement register is set to "1". When CHGED bit is set to " 1 ", the -STSCHG pin is held "L" at the condition of SIGCHG bit set to "1" and the card configured for the I/O interface.
$\begin{aligned} & \hline \text { SIGCHG } \\ & \text { (HOST->) } \end{aligned}$	R/W	This bit is set or reset by the host for enabling and disabling the status-change signal (STSCHG pin). When the card is configured I/O card interface and this bit is set to "1", STSCHG pin is controlled by the CHGED bit. If this bit is set to " 0 ", the -STSCHG pin is kept "H".
$\begin{aligned} & \hline \text { IOIS8 } \\ & \text { (HOST->) } \end{aligned}$	R/W	The host sets this field to "1" when it can provide I/O cycles only with on 8 bit data bus (D7 to D0).
$\begin{aligned} & \hline \text { PWD } \\ & \text { (HOST->) } \end{aligned}$	R/W	When this bit is set to "1", the card enters the sleep state (Power Down mode). When this bit is reset to " 0 ", the card transfers to the idle state (active mode). RRDY/-BSY bit on the Pin Replacement Register becomes BUSY when this bit is changed. RRDY/BSY will not become Ready until the power state requested has been entered. This card automatically powers down when it is idle, and powers back up when it receives a command.
INTR (CARD->)	R	This bit indicates the internal state of the interrupt request. This bit state is available whether the I/O card interface has been configured or not. This signal remains true until the condition which caused the interrupt request has been serviced. If interrupts are disabled by the -IEN bit in the Device Control Register, this bit is a zero.

PCMCIA Flash Memory Card

ATA10 Series

3. Pin Replacement Register (Address 204H)

$\mathbf{t 7}$	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	0	CRDY/-BSY	0	1	1	RRDY/-BSY	0

Note: initial value: 0 CH

Name \quad R/W Function
CRDY/-BSY R/W This bit is set to "1" when the RRDY/-BSY bit changes state. This bit may also be (HOST->) written by the host.
RRDY/-BSY R/W When read, this bit indicates +READY pin states. When written, this bit is used for (HOST->) CRDY/-BSY bit masking.

4. Socket and Copy Register (Address 206H)

This register is used for identification of the card from the other cards. The host can read and write this register. This register should be set by the host before this card's Configuration Option register set.

$\boldsymbol{b i t 7}$	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	0	0	DRV\#	0	0	0	0
Note:	initial value:	00 H					

Note: initial value: 00 H

Name	R/W	Function
DRV\#	R/W	This field is used for the configuration of the plural cards.

PCMCIA Flash Memory Card

ATA10 Series

Sector Transfer Protocol

1. Sector read: 1 sector read procedure after the card configured I/O interface is shown as follows.

PCMCIA Flash Memory Card

ATA10 Series

2. Sector write: 1 sector write procedure after the card configured I/O interface is shown as follows.

DC Current Waveform (Example of sector read or write: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Power on Operation (Reference Only)

PCMCIA Flash Memory Card

ATA10 Series

Sector Read

Sector Write

PCMCIA Flash Memory Card

ATA10 Series

AC Characteristics

Read Timing Parameters

		250ns		
SYM (PCMCIA)	Parameter	Min	Max	Unit
$\mathrm{T}_{\mathrm{C}}(\mathrm{R})$	Read Cycle Time	250		ns
$\mathrm{t}_{\mathrm{a}}(\mathrm{A})$	Address Access Time		250	ns
$\mathrm{t}_{\mathrm{a}}(\mathrm{CE})$	Card Enable Access Time		250	ns
$\mathrm{t}_{\mathrm{a}}(\mathrm{OE})$	Output Enable Access Time		150	ns
$\mathrm{t}_{\mathrm{su}}(\mathrm{A})$	Address Setup Time	30		ns
$\mathrm{t}_{\text {su }}(\mathrm{CE})$	Card Enable Setup Time	0		ns
$\mathrm{t}_{\mathrm{h}}(\mathrm{A})$	Address Hold Time	20		ns
$\mathrm{t}_{\mathrm{h}}(\mathrm{CE})$	Card Enable Hold Time		20	ns
$\mathrm{t}_{\mathrm{v}}(\mathrm{A})$	Output Hold from Address			
Change		0	ns	
$\mathrm{t}_{\text {dis }}(\mathrm{CE})$	Output Disable Time from CE\#		100	ns
$\mathrm{t}_{\text {dis }}(\mathrm{OE})$	Output Disable Time from OE\#		100	ns
$\mathrm{~T}_{\text {en }}(\mathrm{CE})$	Output Enable Time from CE\#	5		ns
$\mathrm{~T}_{\text {en }}($ OE $)$	Output Enable Time from OE\#	5		ns

Note: AC timing diagrams and characteristics are guaranteed to meet or exceed PCMCIA 2.1 specifications.

Read Timing Diagram

Note: Signal may be high or low in this area.

PCMCIA Flash Memory Card

ATA10 Series

Write Timing Parameters

		250ns		
SYM (PCMCIA)	Parameter	Min	Max	Unit
$\mathrm{t}_{\mathrm{c}}(\mathrm{W})$	Write Cycle Time	250		ns
t_{w} (WE)	Write Pulse Width	150		ns
$\mathrm{t}_{\text {su }}(\mathrm{A})$	Address Setup Time	30		ns
$\mathrm{t}_{\text {su }}(\mathrm{A}-\mathrm{WEH})$	Address Setup Time for WE\#	180		ns
$\mathrm{t}_{\text {su }}$ (CE-WEH)	Card Enable Setup Time for WE\#	180		ns
$\mathrm{t}_{\text {su }}(\mathrm{D}-\mathrm{WEH})$	Data Setup Time for WE\#	80		ns
$\mathrm{t}_{\mathrm{h}}(\mathrm{D})$	Data Hold Time	30		ns
$\mathrm{t}_{\text {rec }}$ (WE)	Write Recover Time	30		ns
$\mathrm{t}_{\text {dis }}$ (WE)	Output Disable Time from WE\#		100	ns
$\mathrm{t}_{\text {dis }}(\mathrm{OE})$	Output Disable Time from OE\#		100	ns
$\mathrm{t}_{\text {en }}$ (WE)	Output Enable Time from WE\#	5		ns
$\mathrm{T}_{\text {en }}(\mathrm{OE})$	Output Enable Time from OE\#	5		ns
$\mathrm{t}_{\text {su }}$ (OE-WE)	Output Enable Setup from WE\#	10		ns
t_{h} (OE-WE)	Output Enable Hold from WE\#	10		ns
$\mathrm{t}_{\text {su }}$ (OE)	Card Enable Setup Time from OE\#	0		ns
$\mathrm{t}_{\mathrm{h}}(\mathrm{CE})$	Card Enable Hold Time	20		ns

Note: AC timing diagrams and characteristics are guaranteed to meet or exceed PCMCIA 2.1 specifications.

Write Timing Diagram

Notes:

1. Signal may be high or low in this area.
2. When the data I/O pins are in the output state, no signals shall be applied to the data pins (D15-D0) by the host system.

PCMCIA Flash Memory Card

ATA10 Series

PRODUCT MARKING

WED 7P016ATA1000C15 C995 9915

Note:

Some products are currently marked with our pre-merger company name/acronym (EDI). During our transition period, some products will also be marked with our new company name/acronym (WED). Starting October 2000 all PCMCIA products will be marked only with the WED prefix.

PART NUMBERING

7 P 016 ATA10 00 C15

ATA10 Series

Ordering Information

7P XXX ATA YY SS T ZZ

where

XXX:	008	8MB
	016	16MB
	032	32MB
	048	48MB
	064	64MB
	080	80MB
	096	96MB
	112	112MB
	128	128MB
	192	192MB
	224	224MB
	256	256MB
	320	320MB
	384	384MB
	448	448MB
	512	512MB

YY: $\quad 10 \quad$ Standard, $\mathbf{5 V}$ Only: $($ Controller type $=\mathbf{M X})$

SS:	00	WEDC FLASH Logo,	Type I
	01	Blank Housing,	Type I
	02	Blank Housing,	Type I Recessed
	03	WEDC FLASH Logo,	Type II
	04	Blank Housing,	Type II
	05	Blank Housing,	Type II Recessed
	$\mathbf{0 5}$	Blank Housing,	Type III

T:	C I	Commercial Industrial
ZZ:	25	250ns

Revision History:

rev level	description	date
rev 0	initial release	June 1, 1998
rev 1	Logo change	May 27, 1999
	New card capacity	
rev 2	New flowcharts added	Sep 10, 1999
	New timing diagrams added	
rev 3	New form factor options added	Oct. 18, 1999
	New Flowcharts added	
	New current waveforms added	
	Register list added	
rev 4	Max capacity change to 512MB	Dec 19, 1999
rev 5	Timing corrections on Pgs 21 \& 22. Page 23 added, Page Header changed	June 2, 2000

White Electronic Designs Corporation

One Research Drive, Westborough, MA 01581, USA
tel: (508) 3665151
fax: (508) 8364850
www.whiteedc.com

